11,773 research outputs found

    Quaternionic Hyperbolic Function Theory

    Get PDF
    We are studying hyperbolic function theory in the skew-field of quaternions. This theory is connected to k-hyperbolic harmonic functions that are harmonic with respect to the hyperbolic Riemannian metric (Formula Presented) in the upper half space (Formula Presented). In the case k = 2, the metric is the hyperbolic metric of the Poincaré upper half-space. Hempfling and Leutwiler started to study this case and noticed that the quaternionic power function xm(m Δ Z), is a conjugate gradient of a 2-hyperbolic harmonic function. They researched polynomial solutions. We find fundamental k-hyperbolic harmonic functions depending only on the hyperbolic distance and x3. Using these functions we are able to verify a Cauchy type integral formula. Earlier these results have been verified for quaternionic functions depending only on reduced variables (x0, x1, x2). Our functions are depending on four variables. © Springer Nature Switzerland AG 2019.Peer reviewe

    Ecosystem properties and principles of living systems as foundation for sustainable agriculture – Critical reviews of environmental assessment tools, key findings and questions from a course process

    Get PDF
    With increasing demands on limited resources worldwide, there is a growing interest in sustainable patterns of utilisation and production. Ecological agriculture is a response to these concerns. To assess progress and compliance, standard and comprehensive measures of resource requirements, impacts and agro-ecological health are needed. Assessment tools should also be rapid, standardized, userfriendly, meaningful to public policy and applicable to management. Fully considering these requirements confounds the development of integrated methods. Currently, there are many methodologies for monitoring performance, each with its own foundations, assumptions, goals, and outcomes, dependent upon agency agenda or academic orientation. Clearly, a concept of sustainability must address biophysical, ecological, economic, and sociocultural foundations. Assessment indicators and criteria, however, are generally limited, lacking integration, and at times in conflict with one another. A result is that certification criteria, indicators, and assessment methods are not based on a consistent, underlying conceptual framework and often lack a management focus. Ecosystem properties and principles of living systems, including self-organisation, renewal, embeddedness, emergence and commensurate response provide foundation for sustainability assessments and may be appropriate focal points for critical thinking in an evaluation of current methods and standards. A systems framework may also help facilitate a comprehensive approach and promote a context for meaningful discourse. Without holistic accounts, sustainable progress remains an illdefined concept and an elusive goal. Our intent, in the work with this report, was to use systems ecology as a pedagogic basis for learning and discussion to: - Articulate general and common characteristics of living systems. - Identify principles, properties and patterns inherent in natural ecosystems. - Use these findings as foci in a dialogue about attributes of sustainability to: a. develop a model for communicating scientific rationale. b. critically evaluate environmental assessment tools for application in land-use. c. propose appropriate criteria for a comprehensive assessment and expanded definition of ecological land use

    Conserved Matter Superenergy Currents for Orthogonally Transitive Abelian G2 Isometry Groups

    Full text link
    In a previous paper we showed that the electromagnetic superenergy tensor, the Chevreton tensor, gives rise to a conserved current when there is a hypersurface orthogonal Killing vector present. In addition, the current is proportional to the Killing vector. The aim of this paper is to extend this result to the case when we have a two-parameter Abelian isometry group that acts orthogonally transitive on non-null surfaces. It is shown that for four-dimensional Einstein-Maxwell theory with a source-free electromagnetic field, the corresponding superenergy currents lie in the orbits of the group and are conserved. A similar result is also shown to hold for the trace of the Chevreton tensor and for the Bach tensor, and also in Einstein-Klein-Gordon theory for the superenergy of the scalar field. This links up well with the fact that the Bel tensor has these properties and the possibility of constructing conserved mixed currents between the gravitational field and the matter fields.Comment: 15 page

    A theoretical analysis of the chemical bonding and electronic structure of graphene interacting with Group IA and Group VIIA elements

    Get PDF
    We propose a new class of materials, which can be viewed as graphene derivatives involving Group IA or Group VIIA elements, forming what we refer to as graphXene. We show that in several cases large band gaps can be found to open up, whereas in other cases a semimetallic behavior is found. Formation energies indicate that under ambient conditions, sp3^3 and mixed sp2^2/sp3^3 systems will form. The results presented allow us to propose that by careful tuning of the relative concentration of the adsorbed atoms, it should be possible to tune the band gap of graphXene to take any value between 0 and 6.4 eV.Comment: 5 pages, 4 figures. Transferred to PR

    Dynamical laws of superenergy in General Relativity

    Full text link
    The Bel and Bel-Robinson tensors were introduced nearly fifty years ago in an attempt to generalize to gravitation the energy-momentum tensor of electromagnetism. This generalization was successful from the mathematical point of view because these tensors share mathematical properties which are remarkably similar to those of the energy-momentum tensor of electromagnetism. However, the physical role of these tensors in General Relativity has remained obscure and no interpretation has achieved wide acceptance. In principle, they cannot represent {\em energy} and the term {\em superenergy} has been coined for the hypothetical physical magnitude lying behind them. In this work we try to shed light on the true physical meaning of {\em superenergy} by following the same procedure which enables us to give an interpretation of the electromagnetic energy. This procedure consists in performing an orthogonal splitting of the Bel and Bel-Robinson tensors and analysing the different parts resulting from the splitting. In the electromagnetic case such splitting gives rise to the electromagnetic {\em energy density}, the Poynting vector and the electromagnetic stress tensor, each of them having a precise physical interpretation which is deduced from the {\em dynamical laws} of electromagnetism (Poynting theorem). The full orthogonal splitting of the Bel and Bel-Robinson tensors is more complex but, as expected, similarities with electromagnetism are present. Also the covariant divergence of the Bel tensor is analogous to the covariant divergence of the electromagnetic energy-momentum tensor and the orthogonal splitting of the former is found. The ensuing {\em equations} are to the superenergy what the Poynting theorem is to electromagnetism. See paper for full abstract.Comment: 27 pages, no figures. Typos corrected, section 9 suppressed and more acknowledgments added. To appear in Classical and Quantum Gravit

    Dynamics of diluted magnetic semiconductors from atomistic spin dynamics simulations: Mn doped GaAs as a case study

    Full text link
    The dynamical behavior of the magnetism of diluted magnetic semiconductors (DMS) has been investigated by means of atomistic spin dynamics simulations. The conclusions drawn from the study are argued to be general for DMS systems in the low concentration limit, although all simulations are done for 5% Mn-doped GaAs with various concentrations of As antisite defects. The magnetization curve, M(T)M(T), and the Curie temperature TCT_C have been calculated, and are found to be in good correspondence to results from Monte Carlo simulations and experiments. Furthermore, equilibrium and non-equilibrium behavior of the magnetic pair correlation function have been extracted. The dynamics of DMS systems reveals a substantial short ranged magnetic order even at temperatures at or above the ordering temperature, with a non-vanishing pair correlation function extending up to several atomic shells. For the high As antisite concentrations the simulations show a short ranged anti-ferromagnetic coupling, and a weakened long ranged ferromagnetic coupling. For sufficiently large concentrations we do not observe any long ranged ferromagnetic correlation. A typical dynamical response shows that starting from a random orientation of moments, the spin-correlation develops very fast (∌\sim 1ps) extending up to 15 atomic shells. Above ∌\sim 10 ps in the simulations, the pair correlation is observed to extend over some 40 atomic shells. The autocorrelation function has been calculated and compared with ferromagnets like bcc Fe and spin-glass materials. We find no evidence in our simulations for a spin-glass behaviour, for any concentration of As antisites. Instead the magnetic response is better described as slow dynamics, at least when compared to that of a regular ferromagnet like bcc Fe.Comment: 24 pages, 15 figure
    • 

    corecore